If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-120x+180=0
a = 1; b = -120; c = +180;
Δ = b2-4ac
Δ = -1202-4·1·180
Δ = 13680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13680}=\sqrt{144*95}=\sqrt{144}*\sqrt{95}=12\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-12\sqrt{95}}{2*1}=\frac{120-12\sqrt{95}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+12\sqrt{95}}{2*1}=\frac{120+12\sqrt{95}}{2} $
| v/2-6=-4 | | 4x=9x+20 | | -7x+7=-x+49 | | 3x=2+18 | | -13=3y-4 | | 2x+5=19x+2 | | 9.6(a+5)=4.8a+81.6a= | | 12x+4=5x+18 | | 7a=a+36 | | n+18=-13 | | n+2.9=0.7 | | 15x-45=30+5x+5 | | 1.7x+17=4x-1 | | -1/5x+25=-x+5 | | 378=81•z | | 16(5x-13)=112 | | 17x+15=12x | | 3b=b+50 | | 22x+110=132 | | 9p=p+72 | | 2x+5+19x+7=180 | | 1.4x+8=0.6+5 | | b=85+(10+6) | | 22x+100=132 | | 8w2+9w–3=0 | | 5x-4=4(x-1)+x+10 | | 9c=104+5 | | 3-6v+4v=v+2-4v-3 | | 2(5x-1)=17 | | 5b-87=4b/3+1 | | 1/3x+1/2=5/6x-3/4 | | 4b-64=5b/4+2 |